1505 A

Investigation # 128916

vigos stilla

ACCRETE

Investigation = 1287116

Bryan W. Shaw, Ph.D., P.E., Chairman Toby Baker, Commissioner Jon Niermann, Commissioner Richard A. Hyde, P.E., Executive Director

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

December 28, 2015

Mr. Burgess Stengl Environmental Manager Blue Ridge Landfill TX LP 5757A Oates Road Houston, Texas 77078

Re:

Investigation Request at:

Blue Ridge Landfill, 2200 FM 521 Rd, Fresno, TX 77545-8214

TCEQ MSW Permit No.: 1505A Investigation No.: 1289116

Incident Nos.: 221578, 221637, 221638, 221639, 221735, 221865

Dear Mr. Stengl:

The Texas Commission on Environmental Quality (TCEQ) Houston Region Office received on October 12, 13, 15, 16, and 19, 2015 requests for assistance regarding the offensive odor at the above-referenced facility. In response to this request, Mr. Richard Blackney of this office conducted an investigation on October 23, 2015. No violations are being alleged as a result of the investigation.

For more information about our complaint process, you may access the publication GI-278: *Do You Want to Make an Environmental Complaint? Do You Have Information or Evidence?* on our website at www.tceq.texas.gov.

We appreciate your assistance in this matter and your interest in protecting the quality of our environment. If you have any questions concerning these findings, or if we can be of further assistance, please contact Mr. Blackney at this office at (713) 767-3718.

Sincerely,

Alma L. Jefferson, Team Leader

Waste Section

Houston Region Office

ALJ/RLB/rsv

12/23/2015 9:24:24AM

Incident No: 221578

Media Type: WASTE Start Date: 10/10/2015

Received Date: 10/12/2015

Method: EMAIL

Staff Member: RBLACKNE

Status: Closed

Status Date: 12/23/2015

Priority: Within 14 Calendar Days

Regulated Entity: BLUE RIDGE LANDFILL

RN102610102

Address 2200 FM 521 RD

FRESNO, FORT BEND County, TX 77545

Physical Location: LOCATED ON 2200 FM 521

Responsible Party:

Address:

Title:

Number Complaining: 1

Frequency: PAST

Alleged Source: BLUE RIDGE LANDFILL

Program Group: MUNICIPAL SOLID WASTE - HIGH LEVEL

Nature: ODOR

Effect: ENVIRONMENTAL

Initial Problem

Complainant alleges a strong foul odor that makes it uncomfortable to stand outside and can be smelled indoors.

Action Taken

This complaint has been assigned and will be further investigated by an Environmental Investigator.

Closure Comments

More information will be available upon approval of the investigation report.

12/23/2015 9:24:48AM

Incident No: 221637 Media Type: WASTE

Start Date: Unknown

Received Date: 10/13/2015

Method: EMAIL

Staff Member: RBLACKNE

Status: Closed

Status Date: 12/23/2015

Priority: Within 14 Calendar Days

Regulated Entity: BLUE RIDGE LANDFILL

RN102610102

Address:2200 FM 521 RD

FRESNO, FORT BEND County, TX 77545

Physical Location: LOCATED ON 2200 FM 521

Responsible Party:

Address:

Title:

Number Complaining: 1

Frequency: CURRENT

Alleged Source: BLUE RIDGE LANDFILL

Program Group: MUNICIPAL SOLID WASTE - HIGH LEVEL

Nature: ODOR

Effect: ENVIRONMENTAL

Initial Problem

The complainant alleges smells.

Action Taken

This complaint has been assigned and will be further investigated by an Environmental Investigator.

Closure Comments

More information will be available upon approval of the investigation report.

12/23/2015 9:25:10AM

Incident No: 221638 Media Type: WASTE

Start Date: 10/13/2015

Received Date: 10/15/2015

Method: EMAIL

Staff Member: RBLACKNE

Status: Closed

Status Date: 12/23/2015

Priority: Within 14 Calendar Days

Regulated Entity: BLUE RIDGE LANDFILL

RN102610102

Address2200 FM 521 RD

FRESNO, FORT BEND County, TX 77545

Physical Location: LOCATED ON 2200 FM 521

Responsible Party:

Address:

Title:

Number Complaining: 1

Frequency: PAST

Alleged Source: BLUE RIDGE LANDFILL

Program Group: MUNICIPAL SOLID WASTE - HIGH LEVEL

Nature: ODOR

Effect: ENVIRONMENTAL

Initial Problem

The complainant alleges strong odor.

Action Taken

This complaint has been assigned and will be further investigated by an Environmental Investigator.

Closure Comments

More information will be available upon approval of the investigation report.

			0
			2
			,
			Æ

12/23/2015 9:25:36AM

Incident No: 221639

Media Type: WASTE **Start Date:** 10/14/2015

Received Date: 10/15/2015

Method: EMAIL

Staff Member: RBLACKNE

Status: Closed

Status Date: 12/23/2015

Priority: Within 14 Calendar Days

Regulated Entity: BLUE RIDGE LANDFILL

RN102610102

Address 2200 FM 521 RD

FRESNO, FORT BEND County, TX 77545 Physical Location: LOCATED ON 2200 FM 521

Responsible Party:

Address:

Title:

Number Complaining: 1

Frequency: PAST

Alleged Source: BLUE RIDGE LANDFILL

Program Group: MUNICIPAL SOLID WASTE - HIGH LEVEL

Nature: ODOR

Effect: ENVIRONMENTAL

Initial Problem

The complainant alleges strong odor.

Action Taken

This complaint has been assigned and will be further investigated by an Environmental Investigator.

Closure Comments

More information will be available upon approval of the investigation report.

12/23/2015 9:23:56AM

Staff Member: RBLACKNE

Status: Closed

Status Date: 12/23/2015

Priority: Within 14 Calendar Days

Incident No: 221735 Media Type: WASTE Start Date: 10/15/2015

Received Date: 10/16/2015

Method: EMAIL

Regulated Entity: BLUE RIDGE LANDFILL

RN102610102

Address 2200 FM 521 RD

FRESNO, FORT BEND County, TX 77545

Physical Location: LOCATED ON 2200 FM 521

Responsible Party:

Address:

Title:

Number Complaining: 1 Frequency: CURRENT

Alleged Source: BLUE RIDGE LANDFILL

Program Group: MUNICIPAL SOLID WASTE - HIGH LEVEL

Nature: ODOR

Effect: ENVIRONMENTAL

Initial Problem

The complainant alleges that an odor similar to rotten eggs is emitting from the facility.

Action Taken

This complaint has been assigned and will be further investigated by an Environmental Investigator.

Closure Comments

More information will be available upon approval of the investigation report.

L, s

12/23/2015 9:26:09AM

Incident No: 221865

Media Type: WASTE Start Date: 10/17/2015

Received Date: 10/19/2015

Method: EMAIL

Staff Member: RBLACKNE

Status: Closed

Status Date: 12/23/2015

Priority: Within 14 Calendar Days

Regulated Entity: BLUE RIDGE LANDFILL

RN102610102

Address2200 FM 521 RD

FRESNO, FORT BEND County, TX 77545

Physical Location: LOCATED ON 2200 FM 521

Responsible Party:

Address:

Title:

Number Complaining: 1
Frequency: INTERMITTENT

Alleged Source: BLUE RIDGE LANDFILL

Program Group: MUNICIPAL SOLID WASTE - HIGH LEVEL

Nature: ODOR

Effect: ENVIRONMENTAL

Initial Problem

Complainant alleges bad odor emitting from facility.

Action Taken

This complaint has been assigned and will be further investigated by an Environmental Investigator.

Closure Comments

More information will be available upon approval of the investigation report.

MSW PA_1505A_CO_20151023_Investigation Report **Texas Commission on Environmental Quality Investigation Report**

The TCEQ is committed to accessibility. If you need assistance in accessing this document, please contact oce@tceq.texas.gov

Customer: Blue Ridge Landfill TX, LP Customer Number: CN602820599

Regulated Entity Name: BLUE RIDGE LANDFILL Regulated Entity Number: RN102610102

Investigation # 1289116

Incident Numbers

221638

221865

221637 221578 221639

Investigator:

RICHARD BLACKNEY

Site Classification TYPE 1

221735

Conducted: 10/23/2015 -- 11/03/2015

NAIC Code: 562212

SIC Code: 4953

SIC Code: 1521

Program(s):

MUNICIPAL SOLID WASTE DISPOSAL

Investigation Type: Compliance Investigation

Location: LOCATED ON 2200 FM 521

Additional ID(s):

1505A

Address: 2200 FM 521 RD,

FRESNO, TX, 77545

Local Unit: REGION 12 - HOUSTON

Activity Type(s):

MSWCMPL - Investigation of MSW

complaint

Principal(s):

Role

Name

RESPONDENT

BLUE RIDGE LANDFILL TX LP

Contact(s):

Role

Title

Name

Phone Office

(713) 676-7669

REGULATED ENTITY

ENVIRONMENTAL MANAGER

CONTACT

OPERATIONS

MR LARRY MUNGER

MR BURGESS STENGL

Work

(832) 710-9856

PARTICIPATED IN

SUPERVISOR

Other Staff Member(s):

Name

Supervisor **QA** Reviewer ALMA JEFFERSON

CASIMIR ONWUKA

Associated Check List

Checklist Name

Unit Name

MSW COMPLAINT INVESTIGATION

complaint

Investigation Comments:

BLUE RIDGE LANDFILL - FRES

10/23/2015 to 11/3/2015 Inv. # - 1289116

Page 2 of 4

INTRODUCTION

On October 12, 13, 15, 16, and 19, 2015, the Texas Commission on Environmental Quality (TCEQ) Houston Region Office received complaints alleging odors from Blue Ridge Landfill (BRL) located at 2200 FM 521, Fresno (Fort Bend County), Texas 77545. The odors were alleged to have occurred on October 10, 13, 14, 15, and 17, 2015.

On October 23, 2015, Mr. Richard Blackney, Environmental Investigator for the TCEQ Houston Region Office, conducted an unannounced Odor Complaint Investigation at BRL and the area surrounding it. The complaints were unconfirmed for nuisance odors at the time of the investigation.

BACKGROUND

The most recent Odor Complaint Investigation (No. 1286698) at BRL was conducted on October 2 to 7, 2015. No violations were alleged as a result of the investigation.

GENERAL FACILITY AND PROCESS INFORMATION

BRL authorization numbers from the TCEQ Central Registry database are included in Attachment 1. BRL is a Type I landfill which is authorized to operate by TCEQ Municipal Solid Waste (MSW) Permit No. 1505A.

The landfill is authorized to accept municipal solid waste including household solid waste, commercial solid waste, construction and demolition waste, and yard waste; Class 1, Class 2 and Class 3 non-hazardous industrial waste; and certain special wastes. Class 1 waste is buried in the designated Class 1 cell of the landfill. The special waste currently accepted includes: dead animals, sludge and Class 2 industrial waste.

The waste acceptance hours are Monday through Friday, 4:00 am to 5:00 pm, and Saturdays from 5:30 am to 12:00 pm. The surrounding land use includes industrial facilities and residential subdivisions.

Complainant Information:

See confidential files (TCEQ Incident Nos. 221578, 221637, 221638, 221639, 221735, and 221865). Meteorological conditions during the time the odors were alleged are included in Attachment 2. The meteorological data is taken from TCEQ's continuous air monitoring stations.

Description of Alleged Effects:

No adverse health effects were alleged by the complainants.

Meteorological data at the time of the odor survey

Wind direction: SE

Wind Speed: 14.5 to 16.1 mph Temperature: 80.6 to 82.1°F

Summary of on-site investigation:

The investigator arrived at the first survey point located at the 13900 block of Morgan Bay Dr. Odor Survey (OS) 1 took place upwind of BRL and was conducted at 9:50 a.m. No odors were detected during the 15 minutes spent at OS No. 1.

The investigator went to OS No. 2 located at the intersection of McHard Road and South Post Oak Rd. OS No. 2 took place downwind of BRL and was conducted at 10:17 a.m. No odors were detected during the 15 minutes spent at OS No. 2.

The investigator then went to OS No. 3 located at the 4600 block of Ripple Ridge. OS No. 3 took place downwind of BRL and was conducted at 10:38 a.m., lasting 15 minutes. Odors typical of landfill waste were detected intermittently at OS No. 3, averaging to very light.

Aerial view maps of the OS locations and the OS logs are included in Attachment 3.

The investigator arrived at BRL at approximately 11:15 a.m., and met with Mr. Larry Munger, Operations Supervisor with Republic Services. Mr. Munger drove the investigator to the solidification basin, where ground

BLUE RIDGE LANDFILL - FRESNO

10/23/2015 to 11/3/2015 Inv. # - 1289116

Page 3 of 4

wood was seen being mixed with liquid waste prior to disposal at the working face. A system of misters for the purpose of neutralizing odors was observed to be in operation. Mr. Munger drove the investigator to the MSW and Class 1 working faces, by which piles of soil were observed. No issues were noted at the MSW working face or the Class 1 working face.

BRL receives Class 1 waste in its Class 1 disposal cell Monday through Friday, and receives MSW in the MSW cell Monday through Saturday. Six inches of soil is applied to the Class 1 cell at the end of each operating day. BRL is authorized, by permit, to use tarps as alternate daily cover on the MSW working face. Historically, BRL has used six inches of soil on the MSW working face on Tuesdays, Thursdays and Saturdays, and a combination of soil and tarps for cover on Mondays, Wednesdays, and Fridays. However, according to Mr. Munger, recently they have been using soil exclusively at the end of each operating day. The investigator obtained copies of the cover logs for October 2015 (Attachment 4). No issues were noted.

Description of Odor:

Odors typical of landfill garbage were detected during the odor survey.

Description of the Effects on the Investigator:

No health effects were experienced by the investigator.

Description of the Terrain Features of the Area:

Terrain is flat with businesses, houses and streets.

Location of the Source of the Odor: The alleged source of the odor is BRL.

ODOR FIDO CHART EVALUATION:

The intensity and offensiveness of any odors observed during the investigation using the terms identified for those factors on the Frequency Intensity Duration Offensiveness (FIDO) Chart were noted as follows: Per the FIDO odor characterization examples, landfill garbage/waste odor is characterized as "offensive." The frequency of odors documented by the investigator is a "single occurrence".

Physical Effects Experienced by the Investigator which are Indicative of Adverse Effects upon Health: The investigator did not experience any physical effects during the investigation.

Normal use of Property Affected by the Odor and the Manner in which such Odor could Reasonably be Expected to Interfere with this Use:

According to FIDO protocol, a nuisance condition was not confirmed.

CONCLUSION

No violations of solid waste management requirements were noted as a result of this investigation.

No Violations Associated to this Investigation

Signed Wichard Blacker	Date $12/28/2015$
Environmental Investigator	
Signed Alma L. Jefferson Supervisor	Date 12/28/2015
Attachments: (in order of final report submit	tal)
Enforcement Action Request (EAR)	Maps, Plans, Sketches
Letter to Facility (specify type) : No Action	Photographs
Investigation Report	Correspondence from the facility
Sample Analysis Results	Other (specify):
Manifests	See list of attachments
Notice of Registration	

Blue Ridge Landfill 2200 F.M. 521, Fresno (Fort Bend County), TX 77545 Municipal Solid Waste Permit No. 1505A MSW Complaint Investigation Conducted on October 2, 2015 through October 7, 2015

List of Attachments

Attachment 1 TCEQ Central 1

TCEQ Central Registry information for Blue Ridge Landfill

Attachment 2

Meteorological conditions for September 28, 29, 30, 2015 and October 1,

2, 2015

Attachment 3

Map of Odor Survey locations and Odor Logs

Attachment 4

September and October of 2015 cover logs

ATTACHMENT 1

Questions or Comments >>

Query Home

Customer Search

RE Search

ID Search Document Search Search Results

TCEQ Home

Central Registry Query - Regulated Entity Information

Regulated Entity Information

RN Number: RN102610102

Name: BLUE RIDGE LANDFILL

Primary Business: MUNICIPAL SOLID WASTE LANDFILL **Street Address:** 2200 FM 521 RD, FRESNO TX 77545 8214

County: FORT BEND **Nearest City: FRESNO** State: TX

Near ZIP Code: 77545

Physical Location: LOCATED ON 2200 FM 521

Affiliated Customers - Current

Your Search Returned 5 Current Affiliation Records (View Affiliation History)

1-5 of 5 Records

1 3 0, 3	iteeoi us		
CN Number	Customer Name	Customer Role	Details
CN600343826	BFI WASTE SYSTEMS OF NORTH AMERICA INC	OWNER OPERATOR	\Rightarrow
CN601527963	BFI WASTE SERVICES OF TEXAS LP	OWNER	⇒
CN601721657	LONGHORN EXCAVATORS INC	OPERATOR	⇨
CN602820599	BLUE RIDGE LANDFILL TX LP	OWNER OPERATOR	⇔
CN603713595	GRISHAM & JHA GROUP LLC	OPERATOR	⇔

Industry Type Codes

Code	Classification	Name
562212	NAICS	Solid Waste Landfill
1521	SIC	General Contractors-Single-Family Houses
1629	SIC	Heavy Construction
1794	SIC	Excavation Work
4953	SIC	Refuse Systems

Permits, Registrations, or Other Authorizations

There are a total of 21 programs and IDs for this regulated entity. Click on a column name to change the sort order.

1-21 of 21 Records

Program ▲	ID Type	ID Number	ID Status
AIR EMISSIONS INVENTORY	ACCOUNT NUMBER	FG0536E	ACTIVE
AIR NEW SOURCE PERMITS	ACCOUNT NUMBER	FG0536E	ACTIVE
AIR NEW SOURCE PERMITS	AFS NUM	4815700111	ACTIVE
AIR NEW SOURCE PERMITS	REGISTRATION	32691	CANCELLED
AIR NEW SOURCE PERMITS	REGISTRATION	51882	CANCELLED
AIR NEW SOURCE PERMITS	REGISTRATION	55939	CANCELLED
AIR NEW SOURCE PERMITS	REGISTRATION	77271	CANCELLED
AIR NEW SOURCE PERMITS	REGISTRATION	77703	CANCELLED
AIR NEW SOURCE PERMITS	REGISTRATION	81004	ACTIVE
AIR OPERATING PERMITS	ACCOUNT NUMBER	FG0536E	ACTIVE
AIR OPERATING PERMITS	PERMIT	1472	PENDING
INDUSTRIAL AND HAZARDOUS WASTE	SOLID WASTE REGISTRATION # (SWR)	89429	INACTIVE
MUNICIPAL SOLID WASTE DISPOSAL	PERMIT	1505	CANCELLED
MUNICIPAL SOLID WASTE DISPOSAL	PERMIT	1505A	ACTIVE
PETROLEUM STORAGE TANK REGISTRATION	REGISTRATION	64950	ACTIVE
		(1

ATTACHMENT 2

🗮 Lar 🚃 Water Hom 🍂 Publ 👭 Busine 🏛 Govern 寒 Air 🛢

Water Data

Air Quality Maps

Data Reports

AutoGC

Manvel Croix Park C84 Data by Site by Date (all parameters)

Use this form to retrieve hourly data collected at Manvel Croix Park C84. Although this is the most current data, it is not considered official until it has been certified by the technical staff. This information is updated hourly.

This web page provides the most current hourly averaged data available. Our convention for time-tagging data is the beginning of each hour. For example, values shown for the noon hour are based on measurements taken from noon to 1:00 p.m. The noon average will not be calculated until after 1:00 p.m. The noon average will then be available on our external server from 1:15 p.m. to 1:30 p.m. This results in an apparent one-hour time lag In the data. We also present our data In Local Standard Time for each measuring site. For most of Texas this is Central Standard Time. During Daylight Savings, this introduces another apparent one-hour time lag in the data.

Use the controls below to select a different date or time format and to control cell highlighting based on measured nitrogen dioxide levels. Click on the Generate Report button once you have made your selections. Click on the Plot Data button once the tabular report has been generated to open a separate window containing data plots.

CAMS 84 Manvel Croix Park C84

Select a different site

Month: Day: Year: Time Format:
October | v | 10| v | 2015 | v | 12 Hour (AM/PM) | v | Generate Report Plot Data

Nitrogen Dioxide Highlights: Moderate Munhealthy for Sensitives Munhealthy Mery Unhealthy Mazardous

Green underline for validated data

The table below contains hourly averages for all the pollutants and meteorological conditions measured at Manvel Croix Park C84 for Saturday, October 10, 2015. All times shown are in CST.

Parameter						Mo	rning												rnoo						Pa
Measured	Mid	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Noon	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Me
Nitric Oxide	Commercial Section 1	-	-	0.1	-	0.7			1.1	0.9	0.7	0.9	0.6	0.3				-0.1		0.4	0.2		0.1	0.0	Nitr
Nitrogen Dioxide	-0.2	-0.1	1.4	1.7	2.5	5.1	7.8	7.1	5.1	4.5	4.4	2.6	1.5	1.4	0.5	-0.0	0.4	1.9	8.4	10.0	6.5	4.9	4.6	7.5	Nitr Dio
Oxides of Nitrogen	0.3	-0.1	1.9	1.8	2.6	5.9	8.5	8.6	6.2	5.4	5.2	3.5	2.1	1.7	1.1	0.6	0.5	1.8	8.6	10.5	6.8	5.3	4.8	7.6	Oxid
Ozone	14	17	19	26	26	22	19	23	30	42	55	62	69	79	74	64	59	50	31	26	23	18	SPN	8	Ozo
Wind Speed	1.9	3.9	4.9	5.5	4.9	4.7	5.6	7.1	9.0	7.9	6.5	5.2	5.8	8.0	7.0	6.9	5.9	4.3	2.2	2.5	1.0	1.2	1.5	1.3	Win
Resultant Wind Speed		3.8	4.7	5.1	4.7	4.4	5.3	6.7	8.5	7.3	6.1	4.3	4.8	7.0	6.2	6.3	5.3	4.1	2.1	2.3	0.8	1.2	1.4	1.0	Res
Resultant Wind Direction	278	290	296	2	18	9	2	11	21	36	38	359	353	353	351	9	7	25	51	88	166	212	235	246	Win Dire
Maximum Wind Gust		8.3	10.7	11.3	11.3	8.8	10.4	16.8	15.4	14.9	14.6	11.0	13.1	22.1	13.8	15.1	11.2	9.4	3.7	5.3	2.1	2.7	2.4	4.6	Max Win
Std. Dev. Wind Direction	29	13	17	23	17	18	20	19	19	22	20	33	33	28	28	24	25	19	15	22	36	20	14	41	Std. Win Dire
Outdoor	71.1										78.0					86.3									Tem
Parameter Measured	Mid	1:00	2:00	3:00	4:00		6:00 orning		8:00	9:00	10:00	11:00	Noon	1:00	2:00	3:00	4:00		6:00 rnoo		8:00	9:00	10:00	11:00	Pa Me
	THE REAL PROPERTY.	and the second section is a second section in the second second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a section in the section in the section in the section is a section in the section is a section in the									he tabl												=1.01.47.W/- 3	3301	

PLEASE NOTE: This data has not been verified by the TCEQ and may change. This is the most current data, but it is not official until it has been certified by our technical staff. Data is collected from TCEQ ambient monitoring sites and may include data collected by other outside agencies. This data is updated hourly. All times shown are in local standard time unless otherwise indicated.

Following EPA reporting guidelines, negative values may be displayed in our hourly criteria air quality data beginning 1/1/2013, down to the negative of the EPA listed Method Detection Limit (MDL) for the particular instrument that made the measurements. The reported concentrations can be negative due to zero drift in the electronic instrument output, data logger channel, or calibration adjustments to the data. Prior to 1/1/2013, slightly negative values were automatically set to zero.

Last Modified May 2013

Air Quality Maps

Data Reports

AutoGC

Water Data

Site Info

Manvel Croix Park C84 Data by Site by Date (all parameters)

Use this form to retrieve hourly data collected at Manvel Croix Park C84. Although this is the most current data, it is not considered official until it has been certified by the technical staff. This information is updated hourly.

This web page provides the most current hourly averaged data available. Our convention for time-tagging data is the beginning of each hour. For example, values shown for the noon hour are based on measurements taken from noon to 1:00 p.m. The noon average will not be calculated until after 1:00 p.m. The noon average will then be available on our external server from 1:15 p.m. to 1:30 p.m. This results in an apparent one-hour time lag in the data. We also present our data in Local Standard Time for each measuring site. For most of Texas this is Central Standard Time. During Daylight Savings, this introduces another apparent one-hour time lag in the data.

Use the controls below to select a different date or time format and to control cell highlighting based on measured nitrogen dioxide levels. Click on the Generate Report button once you have made your selections. Click on the Plot Data button once the tabular report has been generated to open a separate window containing data plots.

Select a different site

CAMS 84 Manvel Croix Park C84

Month: Day: Year: Time Format:

October | + 13 + 2015 + 12 Hour (AM/PM) + Generate Report Plot Data

Nitrogen Dioxide Highlights: 'Moderate 'Munhealthy for Sensitives Munhealthy Mery Unhealthy Mazardous

Green underline for validated data

The table below contains hourly averages for all the pollutants and meteorological conditions measured at Manvel Croix Park C84 for **Tuesday**, **October 13, 2015**. All times shown are in CST.

Parameter						Mo	orning	g										Afte	rnoo	n					Pa
Measured	Mid	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Noon	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	М
Nitric Oxide	0.1	0.1	0.7	0.1	0.0	0.4	1.6	SPN	SPN	2.8	SPN	SPN	1.9	1.6	1.3	0.7	1.9	1.2	2.1	1.5	1.9	2.1	1.8	1,1	Nit
Nitrogen Dioxide	0.5	-0.1	0.2	-1.2	-0.5	2.1	5.6	SPN	SPN	5.3	SPN	SPN	4.2	3.1	2.7	1.7	3.5	9.3	17.1	21.2	13.7	12.6	5.6	4.1	Niti
Oxides of Nitrogen		0.0	0.9	-1.1	-0.4	2.6	7.3	SPN	SPN	8.2	SPN	SPN	6.2	4.8	4.1	2.5	5.5	10.8	19.6	23.3	16.0	15.0	7.5	5.4	Oxi Niti
Ozone	15	13	12	7	12	10	5	2	8	23	37	59	78	90	95	86	80	62	33	21	26	12	9	8	Ozo
Wind Speed	2.1	1.8	1.3	1.8	2.7	2.3	2.2	2.3	4.0	5.0	5.0	5.4	6.5	5.3	6.0	6.3	5.6	3.6	3.0	3.1	2.6	0.9	2,0	1.0	Wir
Resultant Wind Speed	2.1	1.8	0.9	1.8	2.7	1.7	2.1	2,1	3.4	4.5	4.3	4.6	5.6	4.3	5.0	5.7	5.2	3.5	2.9	1.6	1.9	0.3	2.0	0.9	Res
Resultant Wind Direction		192	218	311	342	333	317	322	339	1	15	354	7	340	343	351	6	16	28	84	147	58	334	329	Res Win
Maximum Wind Gust	3.1	3.1	2.6	4.1	4.7	4.4	5.2	5.5	8.4	10.6	9.4	11.7	13.5	10.8	13.5	13.2	11.2	7.7	5.4	6.8	8.7	2.4	3.0	2.6	Max
Std. Dev. Wind Direction	8	7	46	15	13	42	23	22	32	25	31	31	29	35	33	25	21	14	11	56	42	<u>65</u>	7	28	Std. Win Dire
<u>Outdoor</u> emperature	73.6	73.5	73.4	73.4	74.5	76.0	76.1	77.1	78.8	81.6	84.0	85.9	87.6	88.9	90.4	91.2	90.6	88.4	83.9	78.7	75.2	72.2	68.6	68.3	Out
Parameter Measured	Mid	1:00	2:00	3:00	4:00		6:00 orning		8:00	9:00	10:00	11:00	Noon	1:00	2:00	3:00	4:00	1	6:00 rnoo		8:00	9:00	10:00	11:00	Pa M
	Maxi	mum	value	s for a	each j	рагап	neter a	are bo	old w	ithin t	he tabi	e. Mini	mum v	alues	are L	old i	talic.								
	R _ [ata fi	rom t	hls in	strum	ent m	eets I	EPA q	uality	assur	ance c	rlteria	for reg	ulato	y pur	poses									

PLEASE NOTE: This data has not been verified by the TCEQ and may change. This is the most current data, but it is not official until it has been certified by our technical staff. Data is collected from TCEQ ambient monitoring sites and may include data collected by other outside agencies. This data is updated hourly. All times shown are in local standard time unless otherwise indicated.

Following EPA reporting guidelines, negative values may be displayed in our hourly criteria air quality data beginning 1/1/2013, down to the negative of the EPA listed Method Detection Limit (MDL) for the particular instrument that made the measurements. The reported concentrations can be negative due to zero drift in the electronic instrument output, data logger channel, or calibration adjustments to the data. Prior to 1/1/2013, slightly negative values were automatically set to zero.

Last Modified May 2013

Hom 🌲 Publ 📶 Busine ៣ Govern ≋ Air 🗏 Lar 🚃 Water

Air Quality Maps

Data Reports

AutoGC

Water Data

Site Info

Manvel Croix Park C84 Data by Site by Date (all parameters)

Use this form to retrieve hourly data collected at Manvel Croix Park C84. Although this is the most current data, it is not considered official until it has been certified by the technical staff. This information is updated hourly.

This web page provides the most current hourly averaged data available. Our convention for time-tagging data is the beginning of each hour. For example, values shown for the noon hour are based on measurements taken from noon to 1:00 p.m. The noon average will not be calculated until after 1:00 p.m. The noon average will then be available on our external server from 1:15 p.m. to 1:30 p.m. This results in an apparent one-hour time lag in the data. We also present our data in Local Standard Time for each measuring site. For most of Texas this is Central Standard Time. During Daylight Savings, this introduces another apparent one-hour time lag in the data.

Use the controls below to select a different date or time format and to control cell highlighting based on measured nitrogen dioxide levels. Click on the Generate Report button once you have made your selections. Click on the Plot Data button once the tabular report has been generated to open a separate window containing data plots.

Select a different site CAMS 84 Manvel Croix Park C84

Month: Day: Year: Time Format:
|October | - 14 - 2015 | 12 Hour (AM/PM) | Generate Report Plot Data

Nitrogen Dioxide Highlights: @Moderate @Unhealthy for Sensitives @Unhealthy @Very Unhealthy @Hazardous

Green underline for validated data

The table below contains hourly averages for all the pollutants and meteorological conditions measured at Manvel Croix Park C84 for Wednesday,

October 14, 2015. All times shown are in CST.

Parameter						Mo	rnine	1											rnoo						Pa
Measured	Mid	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Noon	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	M
Nitric Oxide												1.2	1.6						1.5				1.4		Nit
Nitrogen Dioxide	2.5	6.0	9.0	9.2	18.1	13.0	12.5	25.7	37.9	22.2	7.4	2.0	0.7	0.9	1.0	1.2	2.4	7.6	12.1	9.1	6.7	4.0	6.0	7.3	Nit Dic
Oxides of Nitrogen	4.3	7.6	12.1	14.2	33.8	35.5	43.9	82.0	64.5	28.5	9.3	3.2	2.4	2.4	2,2	2.2	3.4	9.1	13.9	11.7	8.2	5.2	7.6	9.0	Ox Nit
Ozone	5	3	o	0	0	0	0	3	12	36	57	66	68	71	<u>75</u>	68	68	56	42	40	30	21	22	12	<u>Oz</u>
Wind Speed	1.1	1.8	1.0	3.0	2.6	1.9	2.0	2.8	3.3	4.3	5.5	7.2	7.5	7.7	8.0	8.0	6.3	5.1	4.7	2.8	1,4	0.3	1.6	1.9	WI
Resultant Wind Speed	0.6	1.7	0.7			1.8	1.9	2.6	3.1	3.8	5.2	6.6	7.2	7.4	7.5	7.7	6.2	4.9	4.7	2.7	1.3	0.1	1.6	1.9	Re Wi
Resultant Wind Direction	1 1	3	291	352	349	7	13	12	45	94	106	85	84	85	96	95	97	111	136	148	164	83	157	182	Re Wi
Maximum Wind Gust		4.4	2.0	5.4	5.1	4.6	4.3	5.1	5.6	9.9	10.1	13.3	13.2	14.5	14.0	13.8	10.4	8.8	7.3	5.9	3.5	1.0	3.0	3.4	Ma Wi
Std. Dev. Wind Direction	52	18	49	18	16	18	16	21	20	27	20	22	17	17	20	15	11	14	8	12	26	64	10	9	St. Wi
<u>Outdoor</u> emperature	66.9												87.4												II e
Parameter Measured	Mid		Trailinin-			Me	ornin	g				11:00							6:00 rnoo		8:00	9:00	10:00	11:00	F
	Maxi	mum	value	s for	each	paran	neter	are b	old w	ithin t	he tab	le. Mini	mum '	values	are I	bold i	talic.								
	R_	Data f	rom t	his in	strum	ent n	neets	EPA o	uality	assu	rance o	riteria	for rec	ulato	ry pur	pose	5.		This			************			

PLEASE NOTE: This data has not been verified by the TCEQ and may change. This is the most current data, but it is not official until it has been certifled by our technical staff. Data is collected from TCEQ ambient monitoring sites and may include data collected by other outside agencies. This data is updated hourly. All times shown are in local standard time unless otherwise indicated.

Following EPA reporting guidelines, negative values may be displayed in our hourly criteria air quality data beginning 1/1/2013, down to the negative of the EPA listed Method Detection Limit (MDL) for the particular instrument that made the measurements. The reported concentrations can be negative due to zero drift in the electronic instrument output, data logger channel, or calibration adjustments to the data. Prior to 1/1/2013, slightly negative values were automatically set to zero.

Last Modified May 2013

Manvel Croix Park C84 Data by Site by Date (all parameters)

Use this form to retrieve hourly data collected at Manvel Croix Park C84. Although this is the most current data, it is not considered official until it has been certified by the technical staff. This information is updated hourly.

This web page provides the most current hourly averaged data available. Our convention for time-tagging data is the beginning of each hour. For example, values shown for the noon hour are based on measurements taken from noon to 1:00 p.m. The noon average will not be calculated until after 1:00 p.m. The noon average will then be available on our external server from 1:15 p.m. to 1:30 p.m. This results in an apparent one-hour time lag in the data. We also present our data in Local Standard Time for each measuring site. For most of Texas this is Central Standard Time. During Daylight Savings, this introduces another apparent one-hour time lag in the data.

Use the controls below to select a different date or time format and to control cell highlighting based on measured nitrogen dioxide levels. Click on the Generate Report button once you have made your selections. Click on the Plot Data button once the tabular report has been generated to open a separate window containing data plots.

CAMS 84 Manvel Croix Park C84 Select a different site

Month: Day: Year: Time Format:
October | - 15| - 2015| - 12 Hour (AM/PM) - Generate Report Plot Date

Nitrogen Dioxide Highlights: @Moderate @Unhealthy for Sensitives @Unhealthy @Very Unhealthy @Hazardous @Green underline for validated data

The table below contains hourly averages for all the pollutants and meteorological conditions measured at Manvel Croix Park C84 for **Thursday, October 15, 2015.** All times shown are in CST.

Parameter							rnin												rnoo						Pa
Measured	Mid	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Noon	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	M
Nitric Oxide	1.6	1.6	1.1	2.1	17.8	12.0	21.9	23.5	9.9	1.8	2,1	1.3	1.1	1.3	1.3	1.5	1.8	1.5	0.8	1.6	1.7	1.3	1.7	1.4	Nitr
Nitrogen Dioxide		1.3	4.0	4.0	11,5	9.9	11.0	23.8	21.0	7.2	4.4	0.2	-0.7	-0.4	-0.0	0.1	1.2	6.0	9.4	10.0	7.2	7.3	4.3	4.8	Nitr Dio
Oxides of Nitrogen	8.0	2.9	5.2	6.2	30.1	22.5	33.7	<u>48.5</u>	31.6	9.1	6.7	1.6	0.4	0.9	1.3	1.7	3.0	7.7	10.4	11.9	9.1	8.8	6.2	6.4	Oxio
Ozone	13	10	10	4	0	0	0	6	24	39	52	<u>57</u>	56	54	54	55	57	48	41	40	44	42	31	29	Ozo
Wind Speed	2.6	1.2	0.9	1.2	1.5	1.7	2.2	2.7	2,9	4.0	4.6	7.8	9.3	9.4	10.5	9.4	7.6	3.8	3.0	3,5	3.6	2.7	1.9	1,9	Win
Resultant Wind Speed	-	0.9	0.7	0.9	1.5	1.5	2,1	2.6	2.7	2.9	3.9	7.2	8.9	8.6	10.0	9.0	7.4	3.7	2.9	3.4	3.5	2.7	1.9	1.9	Res
Resultant Wind Direction		310	27	35	31	25	12	11	32	129	149	149	157	139	137	140	143	128	120	117	105	93	58	71	Resi Win
Maximum Wind Gust	5.1	2.2	1.9	2.4	2.5	3.1	4.3	4.6	5.3	10.2	10.6	15.6	17.2	16.6	16.6	15.8	12.6	8.8	5.4	5.3	5.6	4.9	2.5	2.6	Max Win
Std. Dev.	<u>55</u>	37	42	41	13	26	17	17	20	41	32	23	17	23	18	15	13	12	9	8	12	13	8	11	Std. Win- Dire
Outdoor emperature						- 11													1.00				69.2		Outo
Parameter	Mid	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Noon	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	
Measured			-				rnin	M										Afte	rnoo	n					Me
	Max	mum	value	s for	each	param	eter	are <u>b</u> e	w <u>blc</u>	thin t	he tabl	e. Minl	mum v	alues	are t	old i	talic.								4
	R _	Data f	rom t	his in	strum	ent m	eets	ÉPA q	uality	assur	ance c	riteria	for reg	ulato	ry pur	poses	j.								

PLEASE NOTE: This data has not been verified by the TCEQ and may change. This is the most current data, but it is not official until it has been certified by our technical staff. Data is collected from TCEQ ambient monitoring sites and may include data collected by other outside agencies. This data is updated hourly. All times shown are in local standard time unless otherwise indicated.

Following EPA reporting guidelines, negative values may be displayed in our hourly criteria air quality data beginning 1/1/2013, down to the negative of the EPA listed Method Detection Limit (MDL) for the particular instrument that made the measurements. The reported concentrations can be negative due to zero drift in the electronic instrument output, data logger channel, or calibration adjustments to the data. Prior to 1/1/2013, slightly negative values were automatically set to zero.

Last Modified May 2013
© 2002-2013 Texas Commission on Environmental Quality

Hom 🏄 Publ 📶 Busine 🏦 Govern ≋ Air 💳 Lar 💥 Water

Air Quality Map

Data Reports

AutoGC

Water Data

16 - 1 - 4 -

Manvel Croix Park C84 Data by Site by Date (all parameters)

Use this form to retrieve hourly data collected at Manvel Croix Park C84. Although this is the most current data, it is not considered official until it has been certified by the technical staff. This information is updated hourly.

This web page provides the most current hourly averaged data available. Our convention for time-tagging data is the beginning of each hour. For example, values shown for the noon hour are based on measurements taken from noon to 1:00 p.m. The noon average will not be calculated until after 1:00 p.m. The noon average will then be available on our external server from 1:15 p.m. to 1:30 p.m. This results in an apparent one-hour time lag in the data. We also present our data in Local Standard Time for each measuring site. For most of Texas this is Central Standard Time. During Daylight Savings, this introduces another apparent one-hour time lag in the data.

Use the controls below to select a different date or time format and to control cell highlighting based on measured nitrogen dloxide levels. Click on the Generate Report button once you have made your selections. Click on the Plot Data button once the tabular report has been generated to open a separate window containing data plots.

CAMS 84 Manvel Croix Park C84

Select a different site

Month: Day: Year: Time Format:

October | 17 | 2015 | 12 Hour (AM/PM) | Generate Report Plot Data

 $\textbf{Nitrogen Dioxide Highlights:} \hspace{0.1cm} \forall \textbf{Moderate} \hspace{0.1cm} \forall \textbf{Unhealthy for Sensitives} \hspace{0.1cm} \forall \textbf{Unhealthy} \hspace{0.1cm} \forall \textbf{Very Unhealthy} \hspace{0.1cm} \forall \textbf{Hazardous}$

Green underline for validated data

The table below contains hourly averages for all the pollutants and meteorological conditions measured at Manvel Croix Park C84 for **Saturday**, **October 17**, **2015**. All times shown are in CST.

Parameter						Mo	rning	3										Afte	ernoo	n					Pa
Measured	Mid	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Noon	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	0 M
Nitric Oxide	2.0	1.4	1.4	1.2	1.2	1.4	1.9	2.5	1.8	1.6	1.7	1.3	1.5	1.3	1.5	1.2	1.6	1.9	1.7	1.2	1.6	1.8	1.1	1.3	Nitr
Nitrogen Dioxide	21.2	14.8	3.3	2.9	3.0	8.2	11.2	9.2	5.1	4.0	2.7	1.8	1.7	1.7	3.1	3.4	3.7	4.9	6.9	8.9	9.8	10.1	5.0	4.6	Nitr
Oxides of Nitrogen	23.8	16.6	4.8	4.2	4.3	9.8	13.4	12.0	7.1	5.8	4.5	3.2	3.3	3.1	4.7	4.7	5.5	6.9	8.8	10.3	11.6	12.2	6.2	6.0	Oxid
Ozone	13	31	38	38	37	29	25	29	36	42	49	56	60	65	71	72	66	56	43	34	24	26	SPN	31	Ozo
Wind Speed	3.4	7.0	7.3	6.3	8,1	6.7	6.0	7.9	11.4	11.8	11.1	11.3	10.3	9.1	9.2	8.1	8.5	6.6	4.9	3.9	2.2	4.5	6.6	5.7	Win
Resultant Wind Speed		6.8	7.2	6.2	7.9	6.6	5.9	7.7	11.1	11.5	10.6	10.8	9.7	8.6	8.4	7.7	8.2	6.2	4.9	3.9	2.1	4.4	6.5	5.6	Res Win
Resultant Wind Direction	7	41	45	39	40	36	33	46	56	55	64	71	59	55	43	37	43	58	87	69	47	32	47	44	Res Win Dire
Maximum Wind Gust	7.9	12.3	12.5	11.2	15.2	11.7	10.1	14.4	20.1	19.0	18.4	19.1	18.5	17.4	16.6	15.0	14.7	13.3	7.6	6.0	4.3	10.3	11.7	10.0	Max Win
Std. Dev. Wind Direction		11	10	11	11	12	11	13	14	14	17	16	20	19	24	18	14	18	8	10	17	11	9	9	Std. Win Dire
<u>Outdoor</u> Temperature				100																			67.5		Out
Parameter Measured	Mid	1:00	2:00	3:00	4:00		6:00		8:00	9:00	10:00	11:00	Noon	1:00	2:00	3:00	4:00		6:00		8:00	9:00	10:00	11:00	Pa Me
	-	IIIA -				aram	eter a	re <u>bo</u>				e. Minir riteria f		STATISTICS OF THE PARTY OF THE											

PLEASE NOTE: This data has not been verified by the TCEQ and may change. This is the most current data, but it is not official until it has been certified by our technical staff. Data is collected from TCEQ ambient monitoring sites and may include data collected by other outside agencies. This data is updated hourly. All times shown are in local standard time unless otherwise indicated.

Following EPA reporting guidelines, negative values may be displayed in our hourly criteria air quality data beginning 1/1/2013, down to the negative of the EPA listed Method Detection Limit (MDL) for the particular instrument that made the measurements. The reported concentrations can be negative due to zero drift in the electronic instrument output, data logger channel, or calibration adjustments to the data. Prior to 1/1/2013, slightly negative values were automatically set to zero.

Last Modified May 2013

Air Quality Maps

Data Reports

AutoGC

Water Data

Manvel Croix Park C84 Data by Site by Date (all parameters)

Use this form to retrieve hourly data collected at Manvel Croix Park C84. Although this is the most current data, it is not considered official until it has been certified by the technical staff. This information is updated hourly.

This web page provides the most current hourly averaged data available. Our convention for time-tagging data is the beginning of each hour. For example, values shown for the noon hour are based on measurements taken from noon to 1:00 p.m. The noon average will not be calculated until after 1:00 p.m. The noon average will then be available on our external server from 1:15 p.m. to 1:30 p.m. This results in an apparent one-hour time lag in the data. We also present our data in Local Standard Time for each measuring site. For most of Texas this is Central Standard Time. During Daylight Savings, this introduces another apparent one-hour time lag in the data.

Use the controls below to select a different date or time format and to control cell highlighting based on measured nitrogen dioxide levels. Click on the Generate Report button once you have made your selections. Click on the Plot Data button once the tabular report has been generated to open a separate window containing data plots.

CAMS 84 Manyel Croix Park C84 Select a different site

Month: Day: Year: Time Format:

- 23 - 2015 - 12 Hour (AM/PM) - Generate Report Plot Data

Nitrogen Dioxide Highlights: &Moderate &Unhealthy for Sensitives &Unhealthy &Very Unhealthy &Hazardous

Green underline for validated data

The table below contains hourly averages for all the pollutants and meteorological conditions measured at Manvel Croix Park C84 for Friday, October 23, 2015. All times shown are in CST.

Parameter							ornin											Afte	rnoo	n					Pa
Measured	Mid	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	Noor	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	М
Nitric Oxide	-0.0	-0.5	-0.2	-0.2	-0.2	-0.4	-0.1	-0.3	SPN	SPN	0.2	SPN	SPN	SPN	1	0.8	1		1	1		1.0		0.6	Nit
Nitrogen Dioxide		-1,9	-1.3	-1.0	0.6	2.1	3.8	2.9	SPN	SPN	-1.5	SPN	SPN	SPN	-0.6	0.2	0.5	0.2	-0.8	-0.9	-1.0	-0.8	-0.8	-0.5	Nit
Oxides of Nitrogen		-2.5	-1.5	-1.1	0.5	1.8	3.8	2.7	SPN	SPN	-1.4	SPN	SPN	SPN	-0.1	1.1	1.2	1.1	-0.3	-0.5	-0.6	0.2	0.1	0.1	Oxi
Ozone	36	34	35	33	31	29	27	28	32	36	<u>37</u>	37	36	36	34	31	30	29	28	27	27	27	26	26	Ozo
Wind Speed	12.3	12.0	10.8	9.7	8.2	7.8	5.2	6.1	9,6	14.9	16.4	15.7	15.6	15.9	15.4	12.8	10.9	9.5	8.8	8.6	8.4	7.1	7.1	6.2	Win
Resultant Wind Speed	12.0	11.8	10.6	9.5	8.0	7.6	5.0	5.9	9.4	14.5	<u>16.1</u>	15.3	15.3	15.7	15,1	12.6	10.6	9.3	8.6	8.4	8.2	6.9	7.0	6.0	Res
Resultant Wind Direction	140	142	141	139	137	141	132	125	138	148	151	157	156	156	152	143	133	131	129	126	119	114	102	103	Res Win
Maximum Wind Gust	21,2	22.7	17.9	19.0	14.5	14.5	9.4	12.9	18.4	26.4	25.8	26.4	25.1	26.4	24.1	22.4	18.1	16.3	15.6	14.9	15.4	13.7	12.8	11.0	Max
Std. Dev. Wind Direction	12	11	11	12	12	11	<u>16</u>	14	12	12	11	13	12	11	11	11	12	12	12	11	13	13	13	12	Std. Win Dire
Outdoor emperature	77.9	77.5	77.7	77.4	77.2	77.1	76.7	76.7	78.6	80.6	81.1	82.1	82.5	81.7	81.3	80.3	79.2	78.4	77.4	77.2	77.0	76.9	76.4		Out
Parameter Measured	Mid	1:00	2:00	3:00	4:00		6:00 rninc		8:00	9:00	10:00	11:00	Noon	1:00	2:00	3:00	4:00		6:00 rnoo		8:00	9:00	10:00	11:00	Pa Me
	Maxi	mum	value	s for e	each p				old wi	thin ti	ne tabl	e. Minii	num v	alues	are b	old i	talic.								-
	_							_		_		riteria I					-								

PLEASE NOTE: This data has not been verified by the TCEQ and may change. This is the most current data, but it is not official until it has been certified by our technical staff. Data is collected from TCEQ ambient monitoring sites and may include data collected by other outside agencies. This data is updated hourly. All times shown are in local standard time unless otherwise indicated.

Following EPA reporting guidelines, negative values may be displayed in our hourly criteria air quality data beginning 1/1/2013, down to the negative of the EPA listed Method Detection Limit (MDL) for the particular instrument that made the measurements. The reported concentrations can be negative due to zero drift in the electronic instrument output, data logger channel, or calibration adjustments to the data. Prior to 1/1/2013, slightly negative values were automatically set to zero.

Last Modified May 2013

ATTACHMENT 3

Odor Survey है Blue Ridge Landfill, MSW Permit No. 1505A West-Dr © 2015 Google Odor Survey 3 my Ridge Rd W Parkridge Dr ✓ Odor Survey 2

Supplemental Investigator's Odor Intensity Time Log

Date of Investigation: 10-23 - 15	Start Time: 9:50
-----------------------------------	------------------

- Minutes-	Odor Intensity VL, L, M, S, VS
1 min	11 (1
2	11 16
3	11 11
4	11 11
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

Minutes	Odor Intensity VL, L, M, S, VS
31 min	
32	
33	
34	
35	
36	
.37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	no odor
51	11 11
52	11
53	11 11
54	10 11
55	LI Y/
56	11) (
57	14 -) (
58	11 11
59	71) 1
60	11 11

Offensiveness: Highly	Offensive	Unpleasant	Not Unpleasant
-----------------------	-----------	------------	----------------

Weighted Average Intensity:

	VS	S	M	L	VL	No Odor
1 Min						
10 Min						
1 Hour					7	

5:00 block McHard id + S Post Oak Rd Supplemental Investigator's Odor Intensity Time Log

Date of Investigation:	1-23-20	Start Time:	10:17
------------------------	---------	-------------	-------

Minutes	Odor Intensity VL, L, M, S,VS
1 min	odor mediony via il, m, o, vo
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	no odor
18	71 11
19	1, (1
20	и (,
21	11 11
22	(
23	(1)
24	
25	66 11
26	()
27	11
28	
29	11 11
30	11 (,

Minutes	Odor Intensity VL, L, M, S, VS
31 min)) //
32	©
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Offensiveness: Highly	Offensive	_ Unpleasant	Not Unpleasant
		~	•

Weighted Average Intensity:

	VS	S	M	L	VL	No Odor
1 Min						
10 Min						
1 Hour						

460. block of Epple Ridge SSE

Supplemental Investigator's Odor Intensity Time Log

Date of Investigation:	10 - 23 - 20 \ Start Time:	10:38

Minutes	Odor Intensity VL, L, M, S,VS
1 min	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

Minutes	Odor Intensity VL, L, M, S, VS
31 min	
32	
_33	
34	
35	
36	
37	
.38	very light
39	nolodor
40	ro odor
41	ho odor
42	no odor
43	no odor
44	no odor
45	no odor
46	no odor
47	Very light
48	no shout
49	very light
50	no odor
51	noodor
52	no odor
53	
54	
55	
56	
57	
58	
59	
60	

Offensiveness: Highly Offensive Unpleasant Not Unpleasant	lighly Offensive Unpleasant Not Unpleasant
---	--

Weighted Average Intensity:

	VS	S	M	L	VL	No Odor
1 Min						
10 Min						
1 Hour						

ATTACHMENT 4

Control Cont	ST REPUBLIC SERVICES Blue Ridge Landfill, MSW-1505A	3	3								o O	OVER	APPL	COVER APPLICATION LOG	NLO	ଜ		
Cool / Market Art Gold Area 1	Daily Cover	Appro	ved Alternate	Daily Cov		- 1	Inspection Date of Dally	Erosion or Leachala	Date Erosion or		Rain	Rain (Inches)		Intermedia	B Cover			Final C
Column 1 Martine 1	6" Soil		Spray-On or	farps			Cover	Seep Detected	Leachale Seep Corrected ⁵	Required ⁷ (yd ²)		20.5		12" 8	Oil			er Final Ck
	Grid Area T ² Method ²	-	Grid Area		egrod 3		√=Inspecied				527	√=Yes	AMT	Grid Area	7,	Method	AMT ¹	Grid Area
	報はい	C	١	1		8-54		_				8						
	記は一つ	1	(-		2-S6												
(11111 1 1 1 1 1 1 1 1	る。	1	1	1	4	6-50												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					ilo	250												
発売が を を を を を を を を を を を の の の の の の の の の の の の の	部は日日	\ _	1	i	1	λ. 8												
1 1 1 1 1 1 1 1 1 1	報を つ!	1	1	(VI.	8-SH												
(11111	なる。	1	1	İ	1	8.59												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	朝野にりる	1	})	1	85.H												
	部路に	7	1	()		458												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1				4	25-4-2												
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1					18.0												
	17 YS					2.5												
	1				10	950												
	53 6"		8 1		US.	0-54												
	1		OU		011-5	X 4.	1											
	三の	1	1	1		0,50												
			ł	1	1													
	理なり	1	1	1	10	2-54												
	でなる。	1	1	1		65.0												
	1 50 E	١	1	l	1	35-63												
	変やノ	1	1	1	(6-6									П			

18 0 7-24 C 12 90 7-33 C" B 13 90 7-33 C" B 16 90 7-33 C" B 16 90 7-33 C" B 1 1/2 17-33 6" 8 5 ARX T-33 1 (4) T-33 1 (10 T-33 9 (0 T-33 9 (0 T-33 SREPUBLIC
SERVICES
Blue Ridge Landfill, MSW-1505A Daily Cover 6° Soll 66666 حرياها 00000 1 1 1 1) 11 { 1 Ĩ AMT1 Approved Alternate Daily Cover Grid Area 1 1 1 į 1 11 Spray-On or Tarps 1 1 1 1 1 Į 1 1 ţ , ((T² Mothod 1 1 1 1 1 1 1 (1 ŧ. 1) ١ ţ \$ \$ \$ \$ \$ \$ \$ 2000 22222 でで MSL Inspection Ension or Date Cover⁶

Cover⁶

Detected Covered Coverded Cov visinapected viaYes Corrective Action⁶ Stockpile Stockpile Required⁷ (yd³) Rain (Inches) Rain (inches) ≥ 0.5⁻⁴ vi=Yes AMT Grid Area T² Method AMT Grid Area T² Intermediate Cover 12" Soll Per Final Closure Plan Final Cover Final Cover Certification Report Reference Month / Year Oddys 2015 THE PARTY OF THE P 系 A PAR Supervisor Signature[®]

CLASS 1 COVER APPLICATION LOG CLASS I NON HAZARDOUS Page 1 of 2